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Abstract

We consider the rank minimization problem from quadratic measurements, i.e., recov-

ering a rank r matrix X ∈ R
n×r from m scalar measurements yi = a⊤

i XX⊤ai, ai ∈

R
n, i = 1, . . . ,m. Such problem arises in a variety of applications such as quadratic re-

gression and quantum state tomography. We present a novel algorithm, which is termed

exponential-type gradient descent algorithm, to minimize a non-convex objective function

f(U) = 1

4m

∑
m

i=1
(yi − a⊤

i UU⊤ai)
2. This algorithm starts with a careful initialization, and

then refines this initial guess by iteratively applying exponential-type gradient descent.

Particularly, we can obtain a good initial guess of X as long as the number of Gaussian

random measurements is O(nr), and our iteration algorithm can converge linearly to the

true X (up to an orthogonal matrix) with m = O (nr log(cr)) Gaussian random measure-

ments.

Mathematics subject classification: 90C26, 94A15.

Key words: Low-rank matrix recovery, Non-convex optimization, Phase retrieval.

1. Introduction

1.1. Problem setup.

Let X ∈ R
n×r be a fixed and unknown matrix with rank(X) = r, and our aim is to recover

X from given quadratic measurements, i.e.,

find X ∈ R
n×r, s.t. yi = a⊤i XX

⊤ai = ‖a⊤i X‖22, i = 1, . . . ,m, (1.1)

where ai = (ai,1, . . . , ai,n) ∈ Rn. This problem is raised in many emerging applications of

science and engineering, such as covariance sketching, quantum state tomography and high

dimensional data streams [7,16,17]. A simple observation is that a⊤i XX
⊤ai = a⊤i XOO

⊤X⊤ai
where O ∈ Rr×r is an orthogonal matrix. We can only hope to recover X up to a right

orthogonal matrix. There exists an orthogonal matrix O∗ ∈ Rr×r such thatXO∗ has orthogonal

column vectors. Hence, throughout the paper we can assume that X has orthogonal column

vectors.

To recover X from given measurements (1.1), we consider the following optimization prob-

lem:

min
U∈Rn×r

f(U) =
1

4m

m
∑

i=1

(yi − ‖a⊤i U‖22)2. (1.2)

The aim of this paper is to develop algorithms to solve (1.2).
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1.2. Related work

1.2.1. Low rank matrix recovery

Rank minimization problem is a direct generalization of compressed sensing [15, 22]. For the

general rank minimization problem, it aims to reconstruct a low rank matrix Q ∈ Rn×n from

incomplete measurements, which can be formulated as the following programming

min
Z∈Rn×n

rank(Z)

subject to tr(AiZ) = yi, i = 1, . . . ,m, (1.3)

where yi = tr(AiQ), Ai ∈ Rn×n, i = 1, . . . ,m. In [26], Xu has proved that in order to guarantee

the solution of (1.3) is Q where Q ∈ Cn×n and rank(Q) ≤ r, the minimal measurement number

m is 4nr − 4r2. Since (1.3) is non-convex, it is challenging to solve it [18]. However, under

a certain restricted isometry property (RIP), this problem can be relaxed to a nuclear norm

minimization problem which is a convex programming and can be solved efficiently [4, 22].

Noting that M := XX⊤ is a low rank matrix, we can recast (1.1) as a rank minimization

problem. This means that we can use the nuclear norm minimization to recover the matrix M

and hence X :

min
Z∈Hn

‖Z‖∗

subject to tr(AiZ) = yi, i = 1, . . . ,m, (1.4)

where Hn := {Q ∈ Rn×n : Q = Q⊤} and Ai = aia
∗
i . Problem (1.4) was studied in [7, 16] with

proving that m ≥ Cnr Gaussian measurements are sufficient to recover the unknown matrix

M = XX⊤ exactly. In [21], Rauhut and Terstiege also consider the case where the measurement

vectors ai, i = 1, . . . ,m are from a tight frame.

1.2.2. Phase retrieval

Under the setting of r = 1, the (1.1) is reduced to phase retrieval problem. Phase retrieval is

to recover an unknown vector from the magnitude of measurements, which means to recover a

signal x ∈ Hn from measurements

yi = |〈ai, x〉|2, i = 1, . . . ,m, (1.5)

where ai ∈ Hn (H = C or R) are sampling vectors. This problem is raised in many imaging

applications due to the limitations of optical sensors which can only record intensity information,

such as X-ray crystallography [14, 19], astronomy [11], diffraction imaging [13, 24]. It has been

proved that m ≥ 4n− 4 Gaussian measurements are sufficient to recover the unknown vector

up to a global phase [8]. In recent years, several different algorithms have been proposed to

solve it [1, 2, 9, 10, 20]. In [3], Candès et al. design Wirtinger flow algorithm for phase retrieval

which solves the following non-convex optimization problem

min
u∈Cn

1

4m

m
∑

i=1

(yi − |a∗i u|2)2 (1.6)

and prove that the algorithm converges to the true signal up to a global phase with high

probability provided the measurement vectors are m = O(n log n) Gaussian measurements.
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Following the work of [3], Chen and Candès [6] propose a modified gradient method which

is called Truncated Wirtinger Flow, and it removes the additional logarithmic factor in the

number of measurements m. In [12], Gao and Xu propose a Gauss-Newton algorithm to solve

(1.6) and they prove that, for the real signal, the algorithm can converge to the global optimal

solution quadratically with O(n log n) measurements.

1.3. Our contribution

In [23, 27], one designed algorithms for solving (1.2). In order to guarantee convergence

to the global optimal solution, the algorithm in [23] requires that m ≥ C‖X‖8Fλ−4
r nr2 log2 n,

while the algorithm in [27] needs m = O(r3κ2n logn), where κ denotes the condition number of

XX⊤. In contrast to those algorithms, we aim to reduce the sampling complexity with removing

the additional logarithmic factor on n. In this paper, we propose a novel algorithm and call it

exponential-type gradient descent algorithm. For the initialization, we give a tighter initial guess

through a careful truncated skill; and for iteration update step, we add a moderate bounded

exponential-type function to the classical gradient. Particularly, we show the followings all hold

with high probability:

• We present a spectral initialization method which obtains a good initial guess provided

m ≥ Cσ−2
r ‖X‖4Fnr and ai, i = 1, . . . ,m are Gaussian random vectors, where σr, σ1 are

the smallest and the largest nonzero eigenvalues of the positive semidefinite matrix XX⊤.

• Starting from our initial guess, we refine the initial estimation by iteratively applying

a novel gradient update rule. If m ≥ Cσ−2
r ‖X‖4Fnr log(cr‖X‖2F/σr), then our algorith-

m linearly converges to a global minimizer X , up to a right orthogonal matrix. More

importantly, the step size in our algorithm is independent with the dimension n.

1.4. Organization

The paper is organized as follows. First, we introduce some notations and lemmas in Section

2. In Section 3, we introduce the exponential-type gradient descent algorithm for solving (1.2).

We study the convergence property of the new algorithm in Section 4. In Section 5, we introduce

the main idea for proving the results which are given in Section 4. Numerical experiments are

made in Section 6. At last, most of the detailed proofs are given in the Appendix.

2. Preliminaries

2.1. Notations

Throughout the paper, we assume that X = (x1, . . . , xr) ∈ Rn×r has orthogonal column-

s. Without loss of generality, we assume that ‖x1‖2 ≥ ‖x2‖2 ≥ · · · ≥ ‖xr‖2. We use the

Gaussian random vectors ai ∈ Rn, i = 1, . . . ,m as the measurement vectors and obtain

yi = a⊤i XX
⊤ai, i = 1, . . . ,m. Here we say the sampling vectors are the Gaussian random

measurements if ai ∈ Rn are i.i.d. N (0, I) random variables. As we have the entire manifold

solutions given by X := {XO : O ∈ O(r)}, where O(r) is the set of r × r orthogonal matrices,

we define the distance between a matrix U ∈ Rn×r and X as

d(U) := min
O∈O(r)

‖XO − U‖F . (2.1)
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To state conveniently, we assume that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (2.2)

are the nonzero eigenvalues of the matrix XX⊤.

2.2. Lemmas

We now introduce some lemmas which will be used in our paper. First, we recall a result

about random matrix with non-isotropic sub-gaussian rows [25, Eq. (4.22)].

Lemma 2.1 ([25, Eq. (4.22)]). Let A be an N × n matrix whose rows are Ai, and assume

that Σ−1/2Ai are isotropic sub-gaussian random vectors, and let K be the maximum of their

sub-gaussian norms. Then for every t ≥ 0, the following inequality holds with probability at

least 1− 2 exp(−ct2):

‖ 1

N
A∗A− Σ‖2 ≤ max(δ, δ2)‖Σ‖2 where δ = C

√

n

N
+

t√
N
.

Here C, c are constants.

The next result is Bernstein-type inequality about sub-exponential random variables [25, The-

orem 2.8.2].

Lemma 2.2 ([25, Theorem 2.8.2]). Let X1, . . . , XN be independent centered sub-exponential

random variables and K = maxi ‖Xi‖ψ1
. Then for every a = (a1, . . . , aN) ∈ RN and every

t ≥ 0, we have

P

{

|
N
∑

i=1

aiXi| ≥ t
}

≤ 2 exp
[

− cmin
( t2

K2‖a‖22
,

t

K‖a‖∞
)

]

,

where c > 0 is an absolute constant.

Lemma 2.3. For any δ > 0, assume that m ≥ 16δ−2n and ai, i = 1, . . . ,m are Gaussian

random vectors. Then for any positive semidefinite matrices M ∈ Rn×n,

(1− δ)‖M‖∗ ≤ 1

m

m
∑

i=1

a⊤i Mai ≤ (1 + δ)‖M‖∗

holds on an event Eδ of probability at least 1 − 2 exp(−mǫ2/2), where δ/4 = ǫ2 + ǫ and the

norm ‖ · ‖∗ denotes the nuclear norm of a matrix. In particular, the right inequality holds for

all matrices.

Proof. The first part of this lemma is a direct consequence of Lemma 3.1 in [5]. Hence,

we only need to prove that the right inequality holds for all matrices. We assume the rank of

matrix M is r. Then by the singular-value decomposition, we can write M =
∑r

j=1 σjujv
⊤
j ,

where uj , vj are unit vectors. It implies that we just need to show

1

m

m
∑

i=1

(a⊤i u)(a
⊤
i v) ≤ 1 + δ
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holds for any fixed unit vectors u, v. Indeed, if we denote A := (a1, . . . , am)⊤, then

m
∑

i=1

(a⊤i u)(a
⊤
i v)

≤ 1

2

m
∑

i=1

(a⊤i u)
2 +

1

2

m
∑

i=1

(a⊤i v)
2

=
1

2
(‖Au‖22 + ‖Av‖22) ≤ σ2

max(A),

where σ2
max(A) is the maximum singular value of A. From the well known deviations bounds

concerning the singular values of Gaussian random matrices, i.e.,

P(σmax(A) ≥
√
m+

√
n+ t) ≤ exp(−t2/2),

we arrive the conclusion if we take m ≥ ǫ−2n and t =
√
mǫ.

3. Exponential-type Gradient Descent Algorithm

Our aim is to recover a matrix X ∈ Rn×r (up to right multiplication by an orthogonal

matrix) from quadratic measurements

yi = ‖a⊤i X‖22, i = 1, . . . ,m

by solving the non-convex optimization problem

min
U∈Rn×r

f(U) =
1

4m

m
∑

i=1

(yi − ‖a⊤i U‖22)2. (3.1)

In this section, we will introduce an exponential-type gradient descent algorithm for solving

(3.1).

3.1. Spectral Initialization

The first step of our algorithm is to choose a good initial guess. In [23], Sanghavi, Ward

and White choose U0 = ZΛ1/2 as the initial guess, where the columns of Z ∈ Rn×r are the

normalized eigenvectors corresponding to the r largest eigenvalues λ1 ≥ · · · ≥ λr of the matrix

Y = 1
2m

m
∑

i=1

yiaia
⊤
i and the diagonal matrix Λ = diag(Λ1, . . . ,Λr) is given by Λi = λi−λr+1. To

guarantee the convergence of the iterative method, the initialization method introduced in [23]

requires O(nr2 log2 n) measurements [23]. Motivated by the methods for choosing the initial

guess in [6] and [23], we introduce a novel initialization method which is stated in Algorithm

3.1. We prove that the new method just need O(nr) measurements to obtain the same accuracy

as the method suggested in [23].
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Algorithm 3.1. Initialization

Input: Measurements yi = ‖a⊤i X‖2, i = 1, . . . ,m, where ai are Gaussian random vectors;

parameter αy > 0.

Define U0 = UΣ1/2, where the columns of U are the normalized eigenvectors

corresponding to the r largest eigenvalues λ1 ≥ · · · ≥ λr of the matrix

Y =
1

m

m
∑

i=1

yiaia
⊤
i 1{yi≤αy

m

∑
m
k=1

yk}

and the diagonal matrix Σ is given by

Σi,i =
1

2
(λi − λr+1).

Output: Initial guess U0.

In our analysis, we require that the parameter αy in Algorithm 1 satisfies αy ≥ C
√

log(cκr),

where κ is the ratio of the largest to the smallest nonzero eigenvalues of matrix XX⊤ and C, c

are universal constants. It means that the choice of αy only depends on the condition number

κ and the rank r of X .

3.2. Exponential-type Gradient Descent

The next step of our algorithm is to refine the initial guess by an update rule to search the

global optimal solution. In [23], Sanghavi, Ward and White iteratively update U via gradient

descent and they also prove the gradient descent method converges to the global optimal solution

provided m ≥ Cnr log2 n. We next introduce an exponential-type gradient descent update rule.

For k = 0, 1, . . ., we take the iteration step as

Uk+1 = Uk − µ∇fex(Uk), (3.2)

where ∇fex(·) denotes the exponential-type gradient given by

∇fex(U) =
1

m

m
∑

i=1

(a⊤i UU
⊤ai − a⊤i XX

⊤ai)aia
⊤
i U · exp

(

− myi
α
∑m

k=1 yk

)

, (3.3)

where α > 0. We state our algorithm as follows:

Algorithm 3.2. Exponential-type Gradient Descent Algorithm

Input: Measurement vectors: ai ∈ Rn, i = 1, . . . ,m; Observations: y ∈ Rm; Parameter

α; Step size µ; ǫ > 0

1: Set T := c log 1
ǫ , where c is a sufficient large constant.

2: Use Algorithm 1 to compute an initial guess U0 .
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3: or k = 0, 1, 2, . . . , T − 1 do

Uk+1 = Uk − µ∇fex(Uk)
= Uk − µ

m

∑m
i=1(a

⊤
i UU

⊤ai − yi)aia
⊤
i U · exp

(

− myi
α
∑

m
k=1

yk

)

4: End for

Output: The matrix UT .

Remark 3.1. There is a parameter α in Algorithm 2. Throughout this paper, we select the

parameter α ≥ 20. Numerical experiments in Section 6 show that the algorithm’s performance

is not sensitive to the selection of α.

4. Main results

In this section we present our main results which give the theoretical guarantee of Algorithm

2. We first study Algorithm 1 with showing that our initial guess U0 is not far from {XO : O ∈
O(r)}.

Theorem 4.1. Suppose that m ≥ c0σ
−2
r ‖X‖4Fnr and

yi = a⊤i XX
⊤ai = ‖a⊤i X‖22, i = 1, . . . ,m

where ai ∈ Rn is the Gaussian random vector. Let U0 be the output of Algorithm 3.1 with

αy ≥ C
√

log(cκr), where κ = σ1/σr denotes the ratio of the largest to the smallest nonzero

eigenvalues of the matrix XX⊤. Then with probability at least 1− 6 exp(−Ω(n)) we have

d(U0) ≤
√

σr
8
,

where c, c0 and C are absolute constants, and d(U0) is defined as

d(U0) := min
O∈O(r)

‖XO − U0‖F .

We next consider the convergence property of Algorithm 2.

Theorem 4.2. Suppose that m ≥ c0σ
−2
r ‖X‖4Fnr log(c1r‖X‖2F /σr) and

yi = a⊤i XX
⊤ai = ‖a⊤i X‖22, i = 1, . . . ,m

where ai ∈ Rn is the Gaussian random vector. Then the following holds with probability at least

1−C exp(−Ω(n)). For all Uk ∈ Rn×r satisfies d(Uk) ≤
√

σr/8, the Uk+1 defined by the update

rule (3.2) with the step size µ ≤ σ3

r

c2σ1‖X‖6

F

satisfies

d(Uk+1) ≤
(

1− ρ0

)1/2

d(Uk), (4.1)

where ρ0 = 2µσr/7.

Combining Theorems 4.1 and 4.2, we can obtain the following corollary which shows that

Algorithm 2 is convergent with high probability provided m ≥ Cnr log(cr).
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Corollary 4.1. Suppose that m ≥ c0σ
−2
r ‖X‖4Fnr log(c1r‖X‖2F/σr) and yi = a⊤i XX

⊤ai =

‖a⊤i X‖22, i = 1, . . . ,m where ai ∈ Rn is the Gaussian random vector. Suppose that ǫ is an

arbitrary constant within range (0,
√

σr/8). Then with probability at least 1 − C exp(−Ω(n)),

Algorithm 2 outputs UT satisfying

d(UT ) ≤ ǫ

provided the step size µ ≤ σ3

r

c2σ1‖X‖6

F

where T ≥ log σr

8ǫ2 log
1

1−ρ0 and ρ0 = 2µσr

7 .

Proof. According to Theorem 4.1, with probability at least 1− 6 exp(−Ω(n)) we have

d(U0) ≤
√

σr
8
.

From the iterative inequality (4.1) in Theorem 4.2, we obtain that

d(UT ) ≤
(

1− ρ0

)1/2

d(UT−1) ≤
(

1− ρ0

)T/2

d(U0)

≤
√

σr
8

(

1− ρ0

)T/2

≤ ǫ,

which holds with probability at least 1− C exp(−Ω(n)). �

Remark 4.1. According to Theorem 4.2, to guarantee Algorithm 2 converges to the true

matrix, we require that the step size

µ ≤ σ3
r/(Cσ1‖X‖6F ). (4.2)

Noting that ‖X‖4F = (σ1+ · · ·+σr)2 ≤ r2σ2
1 , we have σ

3
r/(Cσ1‖X‖6F ) ≥ 1/(Cκ3r2‖X‖2F ) which

implies that

µ ≤ 1/(Cκ3r2‖X‖2F ) (4.3)

is enough to guarantee (4.2) holds. Recall that the algorithms in [23] and [27] require that

µ ≤ (1/Cn4 log4(nr)‖X‖2F ) and µ ≤ C/(κn‖X‖2F ), respectively. Comparing with the step size

in [23] and [27], our step size is independent with the matrix dimension n.

5. The Proof of the Main Results

In this section we give the proof of the main results. To state conveniently, for U ∈ Rn×r,

we set

X̄ := X̄U := argmin
Z∈X

‖U − Z‖F , (5.1)

where X := {XO : O ∈ O(r)}, and O(r) is the set of r × r orthogonal matrices.

Motivated by the results in [3], we next give the definition of the regularity condition. Under

this condition, we shall prove that our algorithm converges linearly to the true matrix X if the

initial guess is not far from it.

Definition 5.1 (Regularity Condition) We say that the function f satisfies the regularity

condition RC(ν, λ, ε) if there exist constants ν, λ such that for all matrices U ∈ Rn×r satisfying

d(U) ≤ ε we have

〈∇fex(U), U − X̄〉 ≥ 1

ν
σr‖U − X̄‖2F +

1

λ‖X‖2F
‖∇fex(U)‖2F ,

where ∇fex(·) is defined in (3.3) and X̄ is defined in (5.1).
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Under the assumption of f satisfying the regularity condition, the next lemma shows the

performance of the update rule.

Lemma 5.1. Assume that the function f satisfies the regularity condition RC(ν, λ, ε) and

d(Uk) ≤ ε. If we take the step size µ ≤ min
(

ν
2σr

, 2
λ‖X‖2

F

)

, then Uk+1 = Uk − µ∇fex(Uk)
satisfies

d(Uk+1) ≤
√

1− 2µσr
ν

d(Uk).

Proof. To state conveniently, we set

X̄k := argmin
Z∈X

‖Uk − Z‖F . (5.2)

Under the regularity condition RC(ν, λ, ε), we have

d(Uk+1)
2 ≤ ‖Uk − X̄k − µ∇fex(Uk)‖2F

= ‖Uk − X̄k‖2F − 2µ〈∇fex(Uk), U − X̄k〉+ µ2‖∇fex(Uk)‖2F
≤ ‖Uk − X̄k‖2F − 2µ

(1

ν
σr‖Uk − X̄‖2F +

1

λ‖X‖2F
‖∇fex(Uk)‖2F

)

+ µ2‖∇fex(Uk)‖2F

=

(

1− 2µσr
ν

)

‖Uk − X̄k‖2F + µ(µ− 2

λ‖X‖2F
)‖∇fex(Uk)‖2F

≤
(

1− 2µσr
ν

)

d(Uk)
2, (5.3)

where the last inequality follows from µ ≤ 2
λ‖X‖2

F

. �

Based on Lemma 5.1, the key point to prove Theorem 4.2 is to show that the function f

satisfies the regularity condition with high probability. The next lemma shows that f satisfies

the regularity condition provided m ≥ c0σ
−2
r ‖X‖4Fnr log(c1r‖X‖2F/σr).

Lemma 5.2. Suppose m ≥ c0σ
−2
r ‖X‖4Fnr log(c1r‖X‖2F/σr) and f is defined as (1.2). Then

f satisfies the regularity condition RC
(

7,
250α2σ1‖X‖4

F

σ3
r

,
√

1
8σr

)

with probability at least 1 −
C exp(−Ω(n)), where α is the constant in ∇fex and C, c0, c1 are universal constants.

We next state the proof of Theorem 4.2.

Proof of Theorem 4.2. According to Lemma 5.2, if m ≥ c0σ
−2
r ‖X‖4Fnr log(c1r‖X‖2F/σr),

then f satisfies the regularity condition with ν = 7, λ = 250α2σ1‖X‖4F/σ3
r and ε =

√

σr/8 with

probability at least 1− C exp(−Ω(n)). Noting that d(Uk) ≤
√

1
8σr, Lemma 5.1 implies that

d(Uk+1) ≤
√

1− 2µσr
ν

d(Uk) =
(

1− 2µσr
7

)1/2

d(Uk)

provided that the step size satisfies

µ ≤ min

(

ν

2σr
,

2

λ‖X‖2F

)

=
σ3
r

125α2σ1‖X‖6F
=

σ3
r

c2σ1‖X‖6F
.

�

We remain to prove Lemma 5.2. To this end, we introduce one proposition and the full

details can be found in the appendix.
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Proposition 5.1. Assume that ‖X‖F = 1 and that m ≥ c0σ
−2
r nr log(c1r/σr). Then with

probability at least 1 − C exp(−Ω(n)), the followings hold for all matrices U ∈ Rn×r satisfying

d(U) ≤
√

σr

8 :

(a) 〈∇fex(U), H〉 ≥ 0.166σr‖H‖2F + 0.78
(

tr2(H⊤X̄) + ‖H⊤X̄‖2F
)

, (5.4)

(b)
σ2

r‖∇fex(U)‖2

F

3α2(‖H‖2

F
+‖X‖2

F )
≤ 1.223σ1‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F , , (5.5)

where H = U − X̄ and X̄ is defined in (5.1).

Now, we can give the proof of Lemma 5.2.

Proof of Lemma 5.2. In order to prove Lemma 5.2, we only need to consider the case where

‖X‖F = 1. For any 0 < γ < 1, multiplying γσr/σ1 on both sides of (5.5) we have

γσ3
r‖∇fex(U)‖2F

3α2σ1 (‖H‖2F + ‖X‖2F )
≤ 1.223γσr‖H‖2F + γσrtr

2(H⊤X̄)/σ1 + γσr‖H⊤X̄‖2F /σ1.

Note that σr ≤ 1. Taking γ = 0.166/12.23 and then combining with (5.4), we obtain

〈∇fex(U), H〉 ≥ 0.1494σr‖H‖2F +
σ3
r‖∇fex(U)‖2F

222α2σ1 (‖H‖2F + ‖X‖2F )

≥ 0.1494σr‖H‖2F +
σ3
r

250α2σ1‖X‖2F
‖∇fex(U)‖2F ,

where we use ‖H‖2F ≤ 1
8σr ≤ 1

8‖X‖2F in the last line. Thus we have

〈∇fex(U), H〉 ≥ 1

ν
σr‖H‖2F +

1

λ‖X‖2F
‖∇fex(U)‖2F

for ν ≥ 7 and λ ≥ 250α2σ1/σ
3
r with probability at least 1−C exp(−Ω(n)), if m ≥ c0σ

−2
r nr log

(c1r/σr). �

6. Numerical Experiments

The purpose of the numerical experiments is the comparison for the exponential-type gradi-

ent descent algorithm with the gradient descent algorithm [23]. In our numerical experiments,

the target matrix X ∈ Rn×r is chosen randomly in standard normal distribution.

Example 6.1. In this example, we test the success rate of the exponential-type gradient de-

scent algorithm with different parameter α. Let X ∈ Rn×r with n = 200, r = 2, the parameter

αy = 9 in spectral initialization and the step size µ = 0.1 ·m/∑m
i=1 yi. We test the performance

with taking α = 20 and 100, respectively. The maximum number of iterations is T = 3000. For

the measurement number, we vary m within the range [nr, 4nr]. For each m, we run 100 times

and calculate the success rate. We consider a trial to be successful when the relative error is

less than 10−5 and the relative error is defined as

min
O∈O(r)

‖XO − U t‖F
‖X‖F

=
‖XZV ⊤ − U t‖F

‖X‖F
,
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Fig. 6.1.: Success rate experiments: Empirical probability of successful recovery based on 100

random trails for different m/nr. Take n = 200, r = 2 and change m/nr between 1 and 4.

where ZDV ⊤ is the singular value decomposition of X⊤U t. Fig. 6.1 shows the numerical

results for exponential-type gradient descent and gradient descent algorithm. The figure shows

that exponential-type gradient descent algorithm achieve 100% recovery rate if m ≥ 4nr and

the empirical success rate is better than the gradient descent algorithm.
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Fig. 6.2.: Convergence experiments: Plot of relative error (log(10)) vs number of iterations

(log(10)). Take n = 200, r = 2 and m = 3nr and the measurement vectors are Gaussian

random vectors.
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Fig. 6.3.: Convergence experiments: Plot of relative error (log(10)) vs number of iterations

(log(10)). Take n = 100, r = 5 and m = 3nr and the measurement vectors are Gaussian

random vectors.
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Example 6.2. In this example, we test the convergence and robustness of the exponential-type

gradient descent algorithm. We use noiseless model for (a) to test the convergence and use the

noise model for (b) to test the robustness. The noise model is described as yi = a⊤i XX
⊤ai+ ǫi

where the noise ǫi ∼ N (0, 0.12), i = 1, . . . ,m. We take the parameter αy = 9 in spectral

initialization and the step size µ = 0.1 · m/∑m
i=1 yi. Let X ∈ R

n×r with n = 200, r = 2 (or

n = 100, r = 5) be generated by standard normal distribution. We take m = 3nr. We consider

the performance with α = 20 and 100, respectively. Figs. 6.2 and 6.3 depict the relative error

against the iteration number with different random measurement ensembles. From the figures,

we observe that our exponential-type gradient descent algorithm converges faster.

7. Appendix

7.1. Proof of Theorem 4.1

Proof. By homogeneity, it suffices to consider the case where ‖X‖F = 1. We assume that

X = (x1, . . . , xr) ∈ Rn×r has orthogonal columns satisfying ‖x1‖2 ≥ · · · ≥ ‖xr‖2. Recall that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero eigenvalues of the positive semidefinite matrix XX⊤

and then

σj = ‖xj‖22, for 1 ≤ j ≤ r.

From Lemma 2.3, for ε > 0, we have

1

m

m
∑

k=1

a⊤k XX
⊤ak =

1

m

m
∑

k=1

yk ∈ [1− ε, 1 + ε], (7.1)

with probability at least 1 − 2 exp(−Ω(n)), if m ≥ Cn where C is a constant depending on ε.

Here, we use the fact that ‖XX⊤‖∗ = ‖X‖2F = 1. The (7.1) implies that

1{yi≤(1−ε)αy} ≤ 1{yi≤
αy

m

∑
m
k=1

yk} ≤ 1{yi≤(1+ε)αy}. (7.2)

Recall that Y = 1
m

∑m
i=1 yiaia

⊤
i 1{yi≤αy

m

∑
m
k=1

yk}. The (7.2) implies that

Y2 � Y � Y1 (7.3)

holds with high probability where

Y2 :=
1

m

m
∑

i=1

yiaia
⊤
i 1{yi≤(1−ε)αy}, Y1 :=

1

m

m
∑

i=1

yiaia
⊤
i 1{yi≤(1+ε)αy}.

We claim the following results:

Claim 7.1. For any 0 < δ < 1, if αy ≥ C
√

log(crσ1/δ), then

‖EY1 − 2XX⊤ − I‖2 ≤ δ, ‖EY2 − 2XX⊤ − I‖2 ≤ δ. (7.4)

The (7.4) implies that ‖EY1‖2 ≥ 1+2σ1−δ and ‖EY2‖2 ≥ 1+2σ1−δ. We can use Lemma 2.1 to

obtain that if m ≥ Cδ−2(1 + 2σ1 − δ)−2n, and then with probability at least 1− 4 exp(−Ω(n)),

we have

‖Y1 − EY1‖2 ≤ δ, ‖Y2 − EY2‖2 ≤ δ, (7.5)

where C is a positive constant. Indeed, in Lemma 2.1 we take the i-th row of A as b⊤i :=√
yia

⊤
i 1{yi≤(1+ε)αy} and set Σ = EY1 with ‖EY1‖2 ≥ 1 + 2σ1 − δ and t = δ‖EY1‖2

√
m. Then
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we can obtain ‖Y1 − EY1‖2 ≤ δ. Similarly, we have ‖Y2 − EY2‖2 ≤ δ if we take the i-th row of

A as b⊤i :=
√
yia

⊤
i 1{yi≤(1−ε)αy} and set Σ := EY2.

Combining (7.3)–(7.5), we have

‖Y − 2XX⊤ − I‖2 ≤ 2δ (7.6)

with probability at least 1 − 6 exp(−Ω(n)) provided m ≥ Cδ−2(1 + 2σ1 − δ)−2n and αy ≥
C
√

log(crσ1/δ). Furthermore, from Wely Theorem we have

|λr+1 − 1| ≤ 2δ and |λn − 1| ≤ 2δ. (7.7)

Next, we turn to consider d(U0). Recall the definition U0 = UΣ1/2 in Algorithm 3.1. Here,

U = (u1, . . . , ur) where uk is normalized eigenvectors corresponding to the eigenvalues λk of

Y for k = 1, . . . , r, and the scaling of the diagonal matrix Σ is given by Σi,i = (λi − λr+1)/2.

Hence,

‖U0U
⊤
0 −XX⊤‖2

≤ ‖U0U
⊤
0 − 1

2
Y +

1

2
λr+1I‖2 + ‖1

2
Y − 1

2
I −XX⊤‖2 +

1

2
‖(λr+1 − 1)I‖2

≤ 1

2
(λr+1 − λn) + δ +

1

2
(λr+1 − 1) ≤ 4δ,

where the second inequality follows from (7.6) and the last inequality follows from (7.7). Then,

using the following fact (see, e.g. the Initialization of [27])

min
O∈O(r)

‖U0 −XO‖2F ≤ ‖U0U
⊤
0 −XX⊤‖2F

(2
√
2− 2)σr

,

and taking δ ≤ σr

18
√
r
, we obtain

min
O∈O(r)

‖U0 −XO‖2F ≤ 2r‖U0U
⊤
0 −XX⊤‖22

(2
√
2− 2)σr

≤ 32rδ2

(2
√
2− 2)σr

≤ σr
8
,

where we use ‖A‖F ≤
√

rank(A)‖A‖2 in the first inequality. The choice of δ implies that the

measurements m ≥ Cσ−2
r nr and αy ≥ C

√

log(c′κr), where κ = σ1/σr denotes the ratio of the

largest to the smallest nonzero eigenvalues of matrix XX⊤.

We remain to prove Claim 7.1. There exists an orthogonal matrix O ∈ Rr×r such that

X = O(‖x1‖2e1, . . . , ‖xr‖2er). Then

O⊤(EY1 − 2XX⊤ − I)O = O⊤
EY1O −

(

2
r
∑

k=1

‖xk‖22eke⊤k + I

)

,

O⊤
EY1O = E

[

r
∑

k=1

‖xk‖22a2i,kaia⊤i 1{∑r
k=1

‖xk‖2

2
a2
i,k

≤(1+ε)αy}

]

. (7.8)

A simple calculation is that

E

[

r
∑

k=1

‖xk‖22a2i,kaia⊤i

]

= 2

r
∑

k=1

‖xk‖22eke⊤k + I, (7.9)

which implies that

O⊤
EY1O ≤ 2

r
∑

k=1

‖xk‖22eke⊤k + I, (7.10)
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where we write M2 ≤ M1 if all entries of M1 −M2 are nonnegative. On the other hand, from

(7.8) we obtain that

O⊤
EY1O = E

[

r
∑

k=1

‖xk‖22a2i,kaia⊤i

]

− E

[

r
∑

k=1

‖xk‖22a2i,kaia⊤i 1{
∑

r
k=1

‖xk‖2

2
a2
i,k

≥(1+ε)αy}

]

. (7.11)

For any 1 ≤ j, l, k ≤ r and δ > 0, by Hölder’s inequality we have

E

[

‖xk‖22a2i,ja2i,l1{
∑

r
k=1

‖xk‖2

2
a2
i,k

≥(1+ε)αy}

]

≤‖x1‖22
√

E[a4i,ja
4
i,l] ·

√

√

√

√P

{

r
∑

k=1

‖xk‖22a2i,k ≥ (1 + ε)αy

}

≤C1‖x1‖22 exp
(

−C0 min
( (1 + ε)2α2

y

‖x1‖42 + · · ·+ ‖xr‖42
,
(1 + ε)αy
‖x1‖22

)

)

≤C1σ1 exp
(

−C0(1 + ε)2α2
y

)

≤ δ

r
(7.12)

provided αy ≥ C
√

log(crσ1/δ), where the second inequality follows from Lemma 2.2 and the

third inequality follows from the fact that ‖X‖F = 1 and ‖xr‖2 ≤ · · · ≤ ‖x1‖2 ≤ 1. The (7.12)

implies that

E

[

r
∑

k=1

‖xk‖22a2i,kaia⊤i 1{
∑

r
k=1

‖xk‖2

2
a2
i,k

≥(1+ε)αy}

]

≤ δI. (7.13)

Thus, combining (7.9), (7.11) and (7.13) we have

O⊤
EY1O ≥ 2

r
∑

k=1

‖xk‖22eke⊤k + (1− δ)I. (7.14)

Combining (7.10) and (7.14) and noting that O⊤EY1O is a diagonal matrix, we obtain

‖EY1 − 2XX⊤ − I‖2 = ‖O⊤(EY1 − 2XX⊤ − I)O‖2 ≤ δ.

Similarly, we can obtain ‖EY2 − 2XX⊤ − I‖2 ≤ δ, which completes the proof. �

7.2. Proof of Proposition 5.1

We always assume that ‖X‖F = 1 throughout the proof. We set H := U − X̄ where

X̄ = argmin
Z∈X

‖U − Z‖F and X is the solution set. Then the exponential-type gradient descent

algorithm can be rewritten as

∇fex(U) =
1

m

m
∑

i=1

(a⊤i HH
⊤ai + 2a⊤i HX̄

⊤ai)(aia
⊤
i H + aia

⊤
i X̄) · exp

(

− myi
α
∑m
k=1 yk

)

. (7.15)

For convenience, we let

ρi,α := exp

(

− myi
α
∑m
i=1 yi

)

, i = 1, . . . ,m. (7.16)

To prove Proposition 5.1, we need the following lemmas.
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Lemma 7.1. For any fixed α ≥ 20 and δ > 0, if m ≥ c0α
2δ−2nr log(

√
r/δ), then with proba-

bility at least 1− C exp(−Ω(α−2δ2m)), the followings hold for all non-zero matrix U ∈ Rn×r:

(a)
1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρi,α ≥ (0.78σr − 2δ)‖H‖2F + 0.78tr2(H⊤X̄) + 0.78‖H⊤X̄‖2F ,

(b)
1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρi,α ≤ (σ1 + 2δ)‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F ,

where C, c0 are universal constants.

Proof. Suppose for the moment that H is independent from ai. By homogeneity, it suffices

to establish the claim for the case ‖H‖F = 1. From (7.1) we have

exp
(

− a⊤i XX
⊤ai

0.99α

)

≤ ρi,α ≤ exp
(

− a⊤i XX
⊤ai

1.01α

)

(7.17)

with high probability. For convenience, we set

ρ̄i,α := exp
(

− a⊤i X̄X̄
⊤ai

0.99α

)

, i = 1, . . . ,m. (7.18)

Noting that a⊤i X̄X̄
⊤ai = a⊤i XX

⊤ai, we have

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρi,α ≥ 1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρ̄i,α. (7.19)

We claim the following results:

Claim 7.2. For any fixed parameter α ≥ 20 it holds

1) E
[

(a⊤i HX̄
⊤ai)2

]

≥ σr‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F

2) E
[

(a⊤i HX̄
⊤ai)2

]

≤ σ1‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F

3) E
[

(a⊤i HX̄
⊤ai)2ρ̄i,α

]

≥ 0.78E
[

(a⊤i HX̄
⊤ai)2

]

.

Then combining 3) and 1) we obtain that

E
[

(a⊤i HX̄
⊤ai)

2ρ̄i,α
]

≥ 0.78σr‖H‖2F + 0.78tr2(H⊤X̄) + 0.78‖H⊤X̄‖2F .

Since

(a⊤i HX̄
⊤ai)

2ρ̄i,α ≤ (a⊤i X̄X̄
⊤ai)ρ̄i,α(a

⊤
i HH

⊤ai)

and (a⊤i X̄X̄
⊤ai)ρ̄i,α is bounded, it means that (a⊤i HX̄

⊤ai)2ρ̄i,α is a sub-exponential random

variable with ψ1 norm O(α‖H‖2F ). We can use Lemma 2.2 to obtain that

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρ̄i,α ≥ E
[

(a⊤i HX̄
⊤ai)

2ρ̄i,α
]

− δ‖H‖2F

≥ (0.78σr − δ)‖H‖2F + 0.78tr2(H⊤X̄) + 0.78‖H⊤X̄‖2F (7.20)
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holds with probability at least 1 − exp(−Ω(α−2δ2m)) where δ > 0. Combining (7.19) and

(7.20), we obtain that (a) holds for a fixed H ∈ Rn×r.

We construct an ǫ-net Nǫ ⊂ Rn×r with cardinality |Nǫ| ≤ (1 + 2
ǫ )
nr such that for any

H ∈ Rn×r with ‖H‖F = 1, there exists H0 ∈ Nǫ satisfying ‖H −H0‖F ≤ ǫ. Taking a union

bound over this set gives that

1

m

m
∑

i=1

(a⊤i H0X̄
⊤ai)

2ρ̄i,α ≥ (0.78σr − δ)‖H0‖2F + 0.78tr2(H⊤
0 X̄) + 0.78‖H⊤

0 X̄‖2F

holds for all H0 ∈ Nǫ with probability at least 1 − (1 + 2
ǫ )
nr exp(−Ω(α−2δ2m)). Note that

ρ̄i,α < 1 for all i. Then there exists a universal constant c1 > 0 such that
∣

∣

∣

∣

∣

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρ̄i,α − 1

m

m
∑

i=1

(a⊤i H0X̄
⊤ai)

2ρ̄i,α

∣

∣

∣

∣

∣

≤ 1

m

m
∑

i=1

∣

∣a⊤i HX̄
⊤ai − a⊤i H0X̄

⊤ai
∣

∣

≤ c1‖HX⊤ −H0X
⊤‖∗ ≤ c1

√
r‖H −H0‖F ≤ c1

√
rǫ, (7.21)

where we use Lemma 2.3 in the second line, the fact ‖A‖∗ ≤
√

rank(A)‖A‖F in the third line.

Indeed, according to Lemma 2.3, for any δ ∈ (0, 1), if m ≥ c0δ
−2n, then with probability at

least 1− C exp(−Ω(n)) we have

1

m

m
∑

i=1

∣

∣a⊤i HX
⊤ai − a⊤i H0X

⊤ai
∣

∣

≤ (1 + δ)‖HX⊤ −H0X
⊤‖∗ ≤ c1‖HX⊤ −H0X

⊤‖∗.
By choosing ǫ = δ

c1
√
r
in (7.21), we conclude the first part of lemma.

We now turn to the part (b). The estimate (7.17) implies that

ρi,α ≤ exp

(

− a⊤i XX
⊤ai

1.01α

)

holds with high probability. It gives that

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρi,α ≤ 1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2 exp

(

−a
⊤
i XX

⊤ai
1.01α

)

.

From Claim 7.2, we have

E

[

(a⊤i HX̄
⊤ai)

2 exp

(

−a
⊤
i XX

⊤ai
1.01α

)]

≤ σ1‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F .

Similarly, (a⊤i HX̄
⊤ai)2 exp

(

−a⊤i XX
⊤ai

1.01α

)

is a sub-exponential random variable with sub-exponential

norm O(α‖H‖2F ). Then, we can employ the method for proving part (a) to prove part (b).

Lemma 7.2. For a fixed λ > 0, for any H ∈ Rn×r and δ > 0, ifm ≥ c0δ
−2λ−2nr log(

√
r/(δλ)),

then with probability at least 1− C exp(−Ω(δ2λ2m)), we have

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2 exp

(

−λa
⊤
i HH

⊤ai
‖H‖2F

)

≤ 2‖HH⊤‖2F + (2δ + 1)‖H‖4F .

Here, c0, C are some universal constants.
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Proof. Without loss of generality, we only need to prove the lemma in the case ‖H‖F = 1.

It is straightforward to show that

E
[

(a⊤i HH
⊤ai)

2 exp
(

−λa⊤i HH⊤ai
)]

≤ E
[

(a⊤i HH
⊤ai)

2
]

= 2‖HH⊤‖2F + ‖H‖4F .

Observe that (a⊤i HH
⊤ai)2 exp

(

−λa⊤i HH⊤ai
)

is a sub-exponential random variable with sub-

exponential norm O(1/λ · ‖H‖2F ). According to Lemma 2.2 we have

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2 exp
(

−λa⊤i HH⊤ai
)

≤ 2‖HH⊤‖2F + ‖H‖4F +
δ0
λ
‖H‖2F

with probability 1− exp(−Ω(δ20m)). We next construct an ǫ-net Nǫ with |Nǫ| ≤ (1 + 2
ǫ )
nr such

that for any H ∈ Rn×r with ‖H‖F = 1, there exists H0 ∈ Nǫ satisfying ‖H −H0‖F ≤ ǫ. Since

x2e−λx is Lipschitz function with Lipschitz constant O(1/λ2), we have

∣

∣

∣

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2 exp
(

− λa⊤i HH
⊤ai
)

− 1

m

m
∑

i=1

(a⊤i H0H
⊤
0 ai)

2 exp
(

− λa⊤i H0H
⊤
0 ai

)
∣

∣

∣

≤ 1

λ2m

m
∑

i=1

∣

∣

∣
a⊤i HH

⊤ai − a⊤i H0H
⊤
0 ai

∣

∣

∣
≤ c2

√
rǫ

λ2
,

where the last inequality follows from Lemma 2.3. By choosing ǫ = δ0λ
c2

√
r
, we obtain

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2 exp
(

−λa⊤i HH⊤ai
)

≤ 2‖HH⊤‖2F + ‖H‖4F +
2δ0
λ

‖H‖2F

with probability at least 1− exp(−Ω(δ20m)) if m ≥ c0δ
−2
0 nr log(

√
r/(δ0λ)). Finally, noting that

‖H‖F = 1 and taking δ0 = λδ, we arrive at the conclusion. �

Corollary 7.1. For any δ > 0, U ∈ Rn×r andH = U−X̄, ifm ≥ c0α
2δ−2σ−2

r nr log(α
√
r/(δσr)),

then with probability at least 1− C exp(−Ω(n)), it holds

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2ρi,α ≤ 2‖HH⊤‖2F + (2δ + 1)‖H‖4F .

Proof. Since σr is the smallest eigenvalue of XX⊤, we have

yi = a⊤i XX
⊤ai ≥ σr‖ai‖2,

which implies that

‖ai‖2 ≤ a⊤i XX
⊤ai

σr
=
yi
σr
. (7.22)

On the other hand, we have

a⊤i HH
⊤ai ≤ ‖H‖2F‖ai‖2. (7.23)

Combining (7.22) and (7.23), we obtain that

yi ≥ σr
a⊤i HH

⊤ai
‖H‖2F

. (7.24)
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According to (7.17) and (7.24), we obtain that

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2ρi,α ≤ 1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2 exp

(

− σr
1.01α

· a
⊤
i HH

⊤ai
‖H‖2F

)

.

We take λ = σr

1.01α in Lemma 7.2 and arrive at the conclusion. �

Proof of Proposition 5.1. To state conveniently, we set

β2 =
1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2ρi,α, γ2 =
2

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρi,α.

According to the expression of exponential-type gradient (7.15), we have

〈∇fex(U), H〉 = β2 + γ2 +
3

m

m
∑

i=1

(a⊤i HX̄
⊤ai)(a

⊤
i HH

⊤ai)ρi,α

≥β2 + γ2 − 3

m

√

√

√

√

m
∑

i=1

(a⊤i HX̄
⊤ai)2ρi,α ·

√

√

√

√

m
∑

i=1

(a⊤i HH
⊤ai)2ρi,α

=β2 + γ2 − 3√
2
βγ =

(

γ − 3

2
√
2
β
)2

− 1

8
β2

≥
(γ2

2
− 9

8
β2
)

− 1

8
β2 =

γ2

2
− 5

4
β2

=
1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρi,α − 5

4m

m
∑

i=1

(a⊤i HH
⊤ai)

2ρi,α

≥(0.78σr − 2δ1)‖H‖2F + 0.78tr2(H⊤X̄) + 0.78‖H⊤X̄‖2F − 5

2
‖HH⊤‖2F − 5(2δ2 + 1)

4
‖H‖4F

≥
(

0.78σr − 2δ1 −
5(2δ2 + 3)

4
‖H‖2F

)

‖H‖2F + 0.78
(

tr2(H⊤X̄) + ‖H⊤X̄‖2F
)

,

where we use Cauchy-Schwarz inequality in the second line, the inequality (γ − β)2 ≥ γ2

2 − β2

in the fourth line, Lemma 7.1 and Corollary 7.1 in the sixth line, and the fact that ‖HH⊤‖F ≤
‖H‖2F in the last line. Note that ‖H‖2F = ‖U − X̄‖2F = d(U)2 ≤ 1

8σr. Taking δ1 ≤ 1
16σr and

δ2 ≤ 1
16 , we obtain that

〈∇fex(U), H〉 ≥ 0.166σr‖H‖2F + 0.78
(

tr2(H⊤X̄) + ‖H⊤X̄‖2F
)

with probability at least 1 − C exp(−Ω(n), if m ≥ c0σ
−2
r nr log(c1r/σr). This implies the part

(a) holds. Next, we turn to the part (b). We consider

‖∇fex(U)‖2F = max
‖W‖F=1,W∈Rn×r

|〈∇fex(U),W 〉|2
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on the case where H = U − X̄ ≤
√

1
8σr. Recall the notation ρi,α in formula (7.16), and we have

|〈∇fex(U),W 〉|2

=

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i HW

⊤ai)ρi,α +
2

m

m
∑

i=1

(a⊤i HX̄
⊤ai)(a

⊤
i HW

⊤ai)ρi,α

+
1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i X̄W

⊤ai)ρi,α +
2

m

m
∑

i=1

(a⊤i HX̄
⊤ai)(a

⊤
i X̄W

⊤ai)ρi,α

)2

≤4

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i HW

⊤ai)ρi,α

)2

+ 16

(

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)(a

⊤
i HW

⊤ai)ρi,α

)2

+ 4

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i X̄W

⊤ai)ρi,α

)2

+ 16

(

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)(a

⊤
i X̄W

⊤ai)ρi,α

)2

.

We first consider the term 4
(

1
m

∑m
i=1(a

⊤
i HH

⊤ai)(a⊤i HW
⊤ai)ρi,α

)2
. Using Cauchy-Schwarz

inequality, we obtain that

4

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i HW

⊤ai)ρi,α

)2

≤4

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2ρi,α

)(

1

m

m
∑

i=1

(a⊤i HW
⊤ai)

2ρi,α

)

≤4

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2ρi,α

)(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i WW⊤ai)ρi,α

)

.

According to Corollary 7.1, we have

1

m

m
∑

i=1

(a⊤i HH
⊤ai)

2ρi,α ≤
(

2‖HH⊤‖2F + (2δ2 + 1)‖H‖4F
)

(7.25)

with probability at least 1 − C exp(−Ω(n)) provided m ≥ c0δ
−2
2 σ−2

r nr log(
√
r/(δ2σr)). Noting

that a⊤i XX
⊤ai ≥ σr‖ai‖2 and a⊤i HH

⊤ai ≤ ‖H‖2F‖ai‖2 we have

a⊤i XX
⊤ai

2.02α
≥ σr · a⊤i HH⊤ai

2.02α‖H‖2F
and

a⊤i XX
⊤ai

2.02α
≥ σr · a⊤i WW⊤ai

2.02α
.

It gives that

(a⊤i HH
⊤ai)(a

⊤
i WW⊤ai)ρi,α

≤(a⊤i HH
⊤ai)(a

⊤
i WW⊤ai) exp

(

−a
⊤
i XX

⊤ai
1.01α

)

≤(a⊤i HH
⊤ai) exp

(

−σr · a
⊤
i HH

⊤ai
2.02α‖H‖2F

)

(a⊤i WW⊤ai) exp

(

−σr · a
⊤
i WW⊤ai
2.02α

)

≤‖H‖2F
(1.01α

eσr

)2

(7.26)
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where we use inequality xe−γx ≤ 1/(eγ) for any x ≥ 0 in the last line. Combining formulas

(7.25) and (7.26), we obtain

4

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i HW

⊤ai)ρi,α

)2

≤4
(1.01α

eσr

)2

‖H‖2F
(

2‖HH⊤‖2F + (2δ2 + 1)‖H‖4F
)

.

The other three terms can be bounded similarly. For the second term, we have

16

(

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)(a

⊤
i HW

⊤ai)ρi,α

)2

≤16

(

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)

2ρi,α

)(

1

m

m
∑

i=1

(a⊤i HW
⊤ai)

2ρi,α

)

≤4
(1.01α

eσr

)2

‖H‖2F
(

4(σ1 + 2δ1)‖H‖2F + 4tr2(H⊤X̄) + 4‖H⊤X̄‖2F
)

with probability at least 1 − C exp(−Ω(n)) provided m ≥ c0δ
−2
1 nr log(

√
r/δ1), where we use

the part (b) of Lemma 7.1 in the last line. The third term and fourth term can be bounded as

4

(

1

m

m
∑

i=1

(a⊤i HH
⊤ai)(a

⊤
i X̄W

⊤ai)ρi,α

)2

≤ 4
(1.01α

eσr

)2

‖X‖2F
(

2‖HH⊤‖2F + (2δ2 + 1)‖H‖4F
)

,

(

1

m

m
∑

i=1

(a⊤i HX̄
⊤ai)(a

⊤
i X̄W

⊤ai)ρi,α

)2

≤
(1.01α

2eσr

)2

‖X‖2F
(

4(σ1 + 2δ1)‖H‖2F + 4tr2(H⊤X̄) + 4‖H⊤X̄‖2F
)

.

Putting there inequalities together and noting that ‖HH⊤‖F ≤ ‖H‖2F , we have

‖∇fex(U)‖2F ≤
(2.02α

eσr

)2
(

‖H‖2F + ‖X‖2F
) ( (

4σ1 + 8δ1 + (2δ2 + 3)‖H‖2F
)

‖H‖2F

+4tr2(H⊤X̄)+4‖H⊤X̄‖2F
)

.

Furthermore, noticing that ‖H‖2F ≤ 1
8σr and choosing δ1 ≤ 1

16σr, δ2 ≤ 1
16 , it follows that

σ2
r‖∇fex(U)‖2F

3α2 (‖H‖2F + ‖X‖2F )
≤ 1.223σ1‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F

with probability at least 1− C exp(−Ω(n), if m ≥ c0σ
−2
r nr log(c1r/σr).

The rest paper is to check the Claim 7.2. For 1) and 2) of the Claim 7.2, let O1 =

argminO∈O(r)‖U −XO‖F , then X̄ = XO1. Recall that X has orthogonal column vectors,

and then there exists an orthogonal matrix O2 ∈ Rn×n such that X = O2(‖x1‖e1, . . . , ‖xr‖er).
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Let Ĥ := HO⊤
1 , H̃ = O⊤

2 Ĥ and ĥs, h̃s, xs denote the sth column of Ĥ, H̃,X respectively, and

ai,s denotes the sth entry of ai. It follows that

E
[

(a⊤i HX̄
⊤ai)

2
]

= E

[

(a⊤i ĤX
⊤ai)

2
]

= E(a⊤i O2H̃X
⊤O2O

⊤
2 ai)

= E(a⊤i H̃X
⊤O2ai) = E

[

‖x1‖(h̃⊤1 ai)ai,1 + · · ·+ ‖xr‖(h̃⊤r ai)ai,r
]2

= E





r
∑

s=1

‖xs‖2(h̃⊤s ai)2a2i,s +
∑

s6=k
‖xs‖‖xk‖(h̃⊤s ai)(h̃⊤k ai)ai,sai,k





=

r
∑

s=1

(

‖xs‖2‖h̃s‖2 + 2‖xs‖2h̃2s,s
)

+
∑

s6=k
‖xs‖‖xk‖

(

h̃s,sh̃k,k + h̃s,kh̃k,s

)

(7.27)

=
r
∑

s=1

‖xs‖2‖ĥs‖2 +
∑

s,k

‖xs‖‖xk‖
(

h̃⊤s esh̃
⊤
k ek + h̃⊤s ekh̃

⊤
k es

)

=

r
∑

s=1

‖xs‖2‖ĥs‖2 +
∑

s,k

(x⊤s ĥsx
⊤
k ĥk + x⊤s ĥkx

⊤
k ĥs)

≥ σr‖Ĥ‖2F + tr2(X⊤Ĥ) + tr(X⊤ĤX⊤Ĥ)

= σr‖H‖2F + tr2(H⊤X̄) + tr(H⊤X̄H⊤X̄)

= σr‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F , (7.28)

where the last equation follows from that H⊤X̄ is a symmetric matrix and the symmetry of

HX⊤ = (U−X̄)X⊤ can be seen by the singular-value decomposition ofX⊤U . More specifically,

suppose that the singular-value decomposition of X⊤U is WDV ⊤, then we have

O1 := argmin
O∈O(r)

‖U −XO‖F = argmax
O∈O(r)

〈XO,U〉 = argmax
O∈O(r)

〈O,WDV ⊤〉 =WV ⊤.

Therefore, U⊤X̄ = U⊤XWV ⊤ = V DV ⊤ is a symmetric matrix, which implies that H⊤X̄ =

U⊤X̄ − X̄⊤X̄ is also symmetric matrix.

Similarly, from formula (7.28), it is easy to obtain

E
[

(a⊤i HX̄
⊤ai)

2
]

≤ σ1‖H‖2F + tr2(H⊤X̄) + ‖H⊤X̄‖2F .

For 3) of the Claim 7.2, using the notation Ĥ, H̃, ĥs, h̃s above, we have

E
[

(a⊤i HX̄
⊤ai)

2ρ̄i,α
]

= E

[

(a⊤i ĤX
⊤ai)

2ρ̄i,α

]

= E

[

r
∑

s=1

‖xs‖2(h̃⊤s ai)2a2i,s ·
r
∏

t=1

exp

(

−
‖xt‖2a2i,t
0.99α

)]

+E





∑

s6=k
‖xs‖‖xk‖(h̃⊤s ai)(h̃⊤k ai)ai,sai,k ·

r
∏

t=1

exp

(

−
‖xt‖2a2i,t
0.99α

)





> 0.78

r
∑

s=1

‖xs‖2(2h̃2s,s + ‖h̃s‖2) + 0.78
∑

s6=k
‖xs‖‖xk‖(h̃s,sh̃k,k + h̃s,kh̃k,s)

= 0.78E
[

(a⊤i HX̄
⊤ai)

2
]

,
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where the last equation follows from (7.27) and the inequality comes from the following two

inequalities (7.29) and (7.30):

E

[

(h̃⊤s ai)
2a2i,s ·

r
∏

t=1

exp(−
‖xt‖2a2i,t
0.99α

)
]

=
1

γωs

( h̃2s,1
ω1

+ · · ·+ h̃2s,s−1

ωs−1
+

3h̃2s,s
ωs

+
h̃2s,s+1

ωs+1
+ · · ·+ h̃2s,r

ωr
+ h̃2s,r+1 + · · ·+ h̃2s,n

)

≥ 1

1.1022 · γ (h̃
2
s,1 + · · ·+ h̃2s,s−1 + 3h̃2s,s + h̃2s,s+1 + · · ·+ h̃2s,n)

≥ 1

1.1022 · e1/0.99α (2h̃
2
s,s + ‖h̃s‖2)

> 0.78(2h̃2s,s + ‖h̃s‖2) (7.29)

provided α ≥ 20 and the parameters ωk, γ are defined as follows:

ωk :=
‖xk‖2
0.495α

+ 1 ≤ 1.102, ∀ 1 ≤ k ≤ r,

γ :=

√

( ‖x1‖2
0.495α

+ 1

)( ‖x2‖2
0.495α

+ 1

)

· · ·
( ‖xr‖2
0.495α

+ 1

)

≤ e1/0.99α

due to the fact that 1 + x ≤ ex for any x ≥ 0 and ‖X‖F = 1. Similarly, for any s 6= k, 1 ≤
s, k ≤ r, we have

E

[

(h̃⊤s ai)(h̃
⊤
k ai)ai,sai,k ·

r
∏

t=1

exp

(

−
‖xt‖2a2i,t
0.99α

)

]

=
h̃s,sh̃k,k + h̃s,kh̃k,s

γωsωk
> 0.78(h̃s,sh̃k,k + h̃s,kh̃k,s). (7.30)
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